V = 2499.4 (7) Å³

Mo $K\alpha$ radiation

 $0.26 \times 0.14 \times 0.07 \text{ mm}$

18707 measured reflections

6073 independent reflections

2970 reflections with $I > 2\sigma(I)$

 $\mu = 3.16 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int}=0.089$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{ μ -6,6'-Diethoxy-2,2'-[ethane-1,2-diy]bis(nitrilomethylidyne)]diphenolato}trinitratosamarium(III)nickel(II)

Rong-Hua Hu,^a Yan Sui,^a* Li Chen,^b Guo-Wei Xie^a and Yan-Li Ai^a

^aJiangXi Province Key Laboratory of Coordination Chemistry, College of Chemistry and Chemical Engineering, JingGangShan University, 343009 Ji'an, JiangXi, People's Republic of China, and ^bCollege of Education, JingGangShan University, 343009 Ji'an, JiangXi, People's Republic of China Correspondence e-mail: ysui@163.com

Received 17 November 2007; accepted 21 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.012 Å; R factor = 0.045; wR factor = 0.084; data-to-parameter ratio = 16.8.

In the title heteronuclear Ni^{II}-Sm^{III} complex (systematic {6,6'-diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethyliname: dyne)]diphenolato- $1\kappa^4 O^1, O^1, O^6, O^6, 2\kappa^4 O^1, N, N'O^{1'}$ trinitrato- $1\kappa^6 O, O'$ -samarium(III)nickel(II)), $[NiSm(C_{20}H_{22} N_2O_4$)(NO₃)₃], with the hexadentate Schiff base compartmental ligand N_N -bis(3-ethoxysalicylidene)ethylenediamine (H_2L) the Ni and Sm atoms are doubly bridged by two phenolate O atoms provided by the Schiff base ligand. The coordination of Ni is square planar with the donor centres of two imine N atoms and two phenolate O atoms. The samarium(III) centre has a decacoordination environment of O atoms, involving the phenolate O atoms, two ethoxy O atoms and two O atoms each from the three nitrates. Some weak $C-H \cdots O$ and $O \cdots Ni$ [3.381 (4) Å] interactions generate a two-dimensional zigzag sheet.

Related literature

For related literature, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005); Sui et al. (2006).

Experimental

Crystal data

[NiSm(C₂₀H₂₂N₂O₄)(NO₃)₃] $M_r = 749.49$ Orthorhombic, $P2_12_12_1$ a = 8.6097 (14) Åb = 13.750(2)Å c = 21.113 (3) Å

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.494, \ T_{\max} = 0.821$

Refinement

H-atom parameters constrained
$\Delta \rho_{\rm max} = 1.58 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -1.58 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
2588 Friedel pairs
Flack parameter: 0.007 (19)

Table 1

Selected bond lengths (Å).

Sm1-O1	2.455 (5)	Sm1-O9	2.507 (6)
Sm1-O2	2.401 (5)	Sm1-O11	2.560 (5)
Sm1-O3	2.621 (5)	Sm1-O12	2.548 (6)
Sm1-O4	2.581 (5)	Ni1-O1	1.861 (5)
Sm1-O5	2.503 (4)	Ni1-O2	1.863 (5)
Sm1-O6	2.573 (5)	Ni1-N1	1.837 (7)
Sm1-O8	2.561 (5)	Ni1-N2	1.840 (6)

Table 2

Hydrogen-bond	geometry	(A, °	').
---------------	----------	-------	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C20-H20A···O9	0.96	2.49	3.150 (10)	126
$C20-H20C\cdots O7^{i}$	0.96	2.55	3.308 (12)	136
$C17 - H17A \cdots O8^{ii}$	0.97	2.59	3.536 (9)	164
C9−H9A···O13 ⁱⁱⁱ	0.97	2.43	3.283 (11)	147
$C7 - H7 \cdots O13^{iv}$	0.93	2.39	3.320 (10)	173
	1 . 1	· a (") · 1	. 3	

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 2$; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 2$; (iii) x + 1, y, z; (iv) $-x+2, y-\frac{1}{2}, -z+\frac{3}{2}$

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: APEX2; software used to prepare material for publication: APEX2 and publCIF (Westrip, 2007).

The authors gratefully acknowledge financial support from the Department of Education, JiangXi Province (grant No. 2007317) and the Natural Science Foundation of JiangXi Province (grant No. 0620029).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2499).

References

- Baggio, R., Garland, M. T., Moreno, Y., Pena, O., Perec, M. & Spodine, E. (2000). J. Chem. Soc. Dalton Trans. pp. 2061–2066.
- Bruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. (1999). Chem. Rev. 99, 2293–2352.
- Edder, C., Piguet, C., Bernardinelli, G., Mareda, J., Bochet, C. G., Bunzli, J.-C. G. & Hopfgartner, G. (2000). *Inorg. Chem.* **39**, 5059–5073.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Knoer, R., Lin, H.-H., Wei, H.-H. & Mohanta, S. (2005). *Inorg. Chem.* 44, 3524–3536.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sui, Y., Fang, X.-N., Xiao, Y.-A., Luo, Q.-Y. & Li, M.-H. (2006). Acta Cryst. E62, m2230–m2232.
- Westrip, S. P. (2007). publCIF. In preparation.

Acta Cryst. (2007). E63, m3191-m3192 [doi:10.1107/S1600536807061508]

{#-6,6'-Diethoxy-2,2'-[ethane-1,2diylbis(nitrilomethylidyne)]diphenolato}trinitratosamarium(III)nickel(II)

R.-H. Hu, Y. Sui, L. Chen, G.-W. Xie and Y.-L. Ai

Comment

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio *et al.*, 2000; Caravan *et al.*, 1999; Edder *et al.*, 2000; Knoer *et al.*, 2005). As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes (Sui *et al.* 2006), we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new Ni^{II}—Sm^{III} complex with salen-type Schiff base *N*,*N*-bis(3-ethoxysalicylidene) ethylenediamine (H₂L).

Complex (I) crystallizes in the space group $P2_12_12_1$, with nickel and samarium doubly bridged by two phenolate O atoms provided by a salen-type Schiff base ligand. The inner salen-type cavity is occupied by nickel(II), while samarium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand. The dihedral angles between the mean planes of Ni1/O1/O2 and Sm1/O1/O2 is 6.28 (29)° suggesting that the bridging moiety is almost planar, with the deviation of atoms from the least squares Ni1/O1/O2/Sm1 plane being -0.0535 (2)Å for Ni, -0.0354 (3)Å for Sm, 0.0437 (2)Å for O1 and 0.0451 (2)Å for O2.

The samarium(III) center in (I) has a decacoordination environment of O atoms. In addition to the phenolate ligands, two ethoxy O atoms coordinate to this metal center, two O atoms from each of the three nitrates chelate to samarium to complete the decacoordination. The three kinds of Sm—O bond distances are significantly different, the shortest being the Sm—O(phenolate) and longest being the Sm—O(ethoxy) separations.

The coordination of nickel(II) is approximately square planar. The donor centers are alternatively above and below the mean N_2O_2 plane with an average deviation from the plane of 0.0798 (2) Å, while Ni1 is 0.0093 (2)Å below this square plane.

Adjacent molecules are held together by weak interactions (O10...Ni1 = 3.381 (4) Å, C7—H7...O13ⁱ = 3.320 (10), C9—H9A...O13ⁱⁱ = 3.283 (11), C17—H17A...O8ⁱⁱⁱ=3.536 (9) and C20—H20*c*...O7^{iv} = 3.308 (12); symmetry codes: (i) -x + 2, y - 1/2, -z + 3/2; (ii) 1 + x, y, z; (iii) 1/2 + x, 3/2 - y, 2 - z; (iv) x - 1/2, 1/2 - y, 2 - z.) these link the molecules into a two-dimensional zigzag sheet (Fig 2).

Experimental

 H_2L was prepared by the 2:1 condensation of 3-ethoxysalicylaldehyde and ethylenediamine in methanol. Complex (I) was obtained by the treatment of nickel(II) acetate tetrahydrate (0.217 g, 1 mmol) with H_2L (0.356 g, 1 mmol) in methanol solution (80 ml) under reflux for 3 h and then for another 3 h after the addition of samarium(III) nitrate hexahydrate (0.445 g, 1 mmol). The reaction mixture was cooled and the resulting precipitate was filtered off, washed with diethyl ether and dried *in vacuo*. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature of

a methanol solution. Analysis calculated for C₂₀H₂₂N₅NiO₁₃Sm: C 32.05, H 2.96, N 9.34, Ni 7.83, Sm 20.06%; found: C 32.15, H 2.98, N 9.22, Ni 7.88, Sm 20.22%. IR(KBr, cm⁻¹): 1642(C=N), 1386,1490(nitrate).

Refinement

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances in the range 0.93 - 0.97 Å, and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Figures

Fig.1. The molecular structure of (I), showing 30% probability displacement ellipsoids. All the H atoms on carbon have been omitted for clarity.

Fig.2. The packing diagram of (I), viewed along the b axis; hydrogen bonds are shown as dashed lines.

Table 1. Selected bond lengths(Å).

Table 2 Hydrogen-bond geometry(Å,°).

 $\{6,6^{\text{-}}\text{-}diethoxy-2,2^{\text{-}}[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato-\\ 1\kappa^4O^1,O^{1_1},O^6,O^{6_1}:2\kappa^4O^1,N,N^{\text{-}}O^{1_1}\}trinitrato-1\kappa^6O,O^{\text{-}}\ samarium(III)nickel(II)$

Crystal data	
[NiSm(C ₂₀ H ₂₂ N ₂ O ₄)(NO ₃) ₃]	$F_{000} = 1484$
$M_r = 749.49$	$D_{\rm x} = 1.992 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 4344 reflections
a = 8.6097 (14) Å	$\theta = 1.9 - 28.2^{\circ}$
b = 13.750 (2) Å	$\mu = 3.16 \text{ mm}^{-1}$
c = 21.113 (3) Å	T = 293 (2) K
V = 2499.4 (7) Å ³	Block, red
Z = 4	$0.26 \times 0.14 \times 0.07 \text{ mm}$
Data collection	

Bruker APEXII area	a-detector

6073 independent reflections

diffractometer	
Radiation source: fine-focus sealed tube	2970 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.089$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 28.2^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.9^{\circ}$
ϕ and ω scan	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$k = -17 \rightarrow 18$
$T_{\min} = 0.494, \ T_{\max} = 0.821$	$l = -28 \rightarrow 27$
18707 measured reflections	

Re	finer	nent
ne	inci	nenn

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.010P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.084$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 1.58 \text{ e } \text{\AA}^{-3}$
6073 reflections	$\Delta \rho_{min} = -1.58 \text{ e } \text{\AA}^{-3}$
362 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
1 restraint	Extinction coefficient: 0.00131 (15)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2588 Freidel pairs

Secondary atom site location: difference Fourier map Flack parameter: 0.007 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

												,
En and and all		1:		······				:	1		1 14	- 1
Frachonal	aiomic	coorainaies	ana isoi	ronic o	r ea	uivaient	1SOIPOI	nc ars	niacement	narameters	IA -	1
1 1 00011011011	anomne	coordinates	<i>and i</i> 501	a opic o	1 09		1501101	ove www.	pracement	parameters	1 * *	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sm1	0.74822 (5)	0.49875 (3)	0.904649 (15)	0.04039 (13)
Ni1	1.06957 (11)	0.43994 (7)	0.81466 (5)	0.0377 (3)
02	0.9712 (5)	0.5510 (4)	0.8455 (2)	0.0368 (12)
01	0.9232 (7)	0.3732 (3)	0.8629 (2)	0.0429 (14)
C16	1.0300 (9)	0.6379 (6)	0.8438 (4)	0.040 (2)

N2	1.1979 (6)	0.5089 (5)	0.7614 (3)	0.0415 (17)
O5	0.7374 (7)	0.5086 (5)	1.0229 (2)	0.0609 (14)
C1	0.9166 (11)	0.2794 (6)	0.8738 (4)	0.039 (2)
O6	0.9601 (6)	0.4659 (4)	0.9879 (3)	0.0578 (18)
O3	0.6921 (6)	0.3156 (4)	0.9304 (2)	0.0418 (15)
N1	1.1761 (8)	0.3307 (5)	0.7897 (3)	0.040 (2)
C11	1.1493 (10)	0.6679 (6)	0.8038 (4)	0.039 (2)
C2	0.7939 (8)	0.2430 (5)	0.9086 (4)	0.039 (2)
C12	1.2037 (9)	0.7641 (6)	0.8051 (4)	0.046 (2)
H12	1.2781	0.7845	0.7761	0.056*
C7	1.1482 (10)	0.2432 (7)	0.8103 (5)	0.050 (3)
H7	1.2178	0.1952	0.7977	0.060*
C19	0.5526 (9)	0.2857 (6)	0.9639 (4)	0.047 (2)
H19A	0.5074	0.3418	0.9848	0.057*
H19B	0.5803	0.2387	0.9962	0.057*
C6	1.0246 (9)	0.2123 (5)	0.8494 (4)	0.0364 (19)
O4	0.8532 (6)	0.6719 (4)	0.9247 (2)	0.0404 (14)
C15	0.9653 (10)	0.7080 (6)	0.8862 (4)	0.037 (2)
C4	0.8980 (11)	0.0817 (6)	0.9028 (4)	0.054 (2)
H4	0.8940	0.0164	0.9142	0.064*
N3	0.8787 (9)	0.4933 (6)	1.0341 (3)	0.0523 (17)
C10	1.2268 (11)	0.5986 (6)	0.7611 (4)	0.048 (2)
H10	1.3003	0.6221	0.7327	0.058*
07	0.9325 (7)	0.4984 (5)	1.0867 (3)	0.0793 (17)
C20	0.4353 (10)	0.2419 (6)	0.9207 (4)	0.064 (3)
H20A	0.4092	0.2877	0.8881	0.096*
H20B	0.3437	0.2256	0.9444	0.096*
H20C	0.4774	0.1841	0.9018	0.096*
C5	1.0135 (10)	0.1148 (6)	0.8660 (4)	0.048 (2)
Н5	1.0880	0.0713	0.8512	0.058*
C13	1.1476 (11)	0.8275 (6)	0.8488 (4)	0.058 (2)
H13	1.1907	0.8893	0.8519	0.070*
011	0.6799 (7)	0.4591 (5)	0.7895 (3)	0.0548 (19)
09	0.4640 (7)	0.4655 (4)	0.8904 (3)	0.0610 (18)
N5	0.6398 (9)	0.5460 (7)	0.7739 (4)	0.054 (2)
012	0.6472 (7)	0.6093 (4)	0.8170 (3)	0.0569 (16)
O8	0.5117 (7)	0.5881 (5)	0.9497 (3)	0.0611 (19)
N4	0.4132 (9)	0.5368 (6)	0.9234 (4)	0.053 (2)
O10	0.2729 (8)	0.5498 (6)	0.9315 (3)	0.083 (2)
C17	0.7801 (9)	0.7381 (5)	0.9708 (3)	0.043 (2)
H17A	0.8603	0.7760	0.9916	0.051*
H17B	0.7275	0.6999	1.0029	0.051*
C3	0.7828 (10)	0.1467 (6)	0.9240 (4)	0.045 (2)
H3	0.7001	0.1243	0.9483	0.054*
C8	1.3125 (10)	0.3502 (7)	0.7503 (4)	0.055 (3)
H8A	1.3308	0.2971	0.7211	0.066*
H8B	1.4043	0.3589	0.7764	0.066*
C9	1.2742 (10)	0.4432 (6)	0.7147 (3)	0.050 (2)
H9A	1.3680	0.4728	0.6982	0.060*

H9B	1.2047	0.4296	0.6797	0.060*
C14	1.0292 (9)	0.8018 (6)	0.8880 (4)	0.047 (2)
H14	0.9899	0.8472	0.9164	0.057*
O13	0.5995 (7)	0.5672 (5)	0.7215 (3)	0.083 (2)
C18	0.6670 (10)	0.8050 (6)	0.9409 (4)	0.058 (3)
H18A	0.7186	0.8434	0.9093	0.087*
H18B	0.6235	0.8470	0.9726	0.087*
H18C	0.5854	0.7679	0.9214	0.087*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sm1	0.0467 (2)	0.03015 (18)	0.04428 (19)	0.0004 (3)	0.0029 (3)	-0.0022 (2)
Ni1	0.0425 (6)	0.0292 (5)	0.0414 (5)	-0.0002 (5)	0.0048 (5)	-0.0048 (5)
02	0.043 (3)	0.023 (3)	0.045 (3)	-0.003 (3)	0.005 (3)	0.002 (3)
01	0.062 (4)	0.021 (3)	0.046 (3)	-0.004 (3)	0.007 (3)	0.002 (2)
C16	0.049 (5)	0.041 (5)	0.030 (4)	-0.006 (4)	-0.002 (4)	-0.008 (4)
N2	0.050 (4)	0.028 (4)	0.047 (4)	-0.008 (4)	0.005 (3)	-0.004 (4)
05	0.075 (4)	0.071 (4)	0.037 (3)	0.007 (6)	0.011 (3)	0.009(3)
C1	0.040 (5)	0.025 (5)	0.051 (5)	-0.004 (4)	-0.007 (5)	-0.007 (4)
O6	0.044 (3)	0.075 (5)	0.054 (4)	0.008 (3)	0.002 (3)	0.005 (3)
O3	0.051 (4)	0.027 (3)	0.048 (3)	-0.009 (3)	0.015 (3)	0.008 (2)
N1	0.044 (5)	0.034 (4)	0.043 (5)	0.003 (4)	0.005 (4)	-0.011 (4)
C11	0.048 (6)	0.026 (5)	0.044 (6)	0.000 (4)	0.000 (5)	0.000 (4)
C2	0.047 (6)	0.024 (4)	0.044 (5)	0.000 (4)	-0.007 (4)	0.000 (4)
C12	0.048 (6)	0.036 (5)	0.055 (6)	-0.011 (4)	0.013 (4)	0.000 (4)
C7	0.044 (6)	0.042 (6)	0.064 (6)	0.018 (5)	0.002 (5)	-0.024 (5)
C19	0.044 (5)	0.047 (5)	0.052 (6)	-0.006 (5)	0.004 (5)	0.005 (4)
C6	0.039 (5)	0.025 (4)	0.045 (5)	0.007 (4)	-0.007 (5)	-0.003 (4)
O4	0.054 (4)	0.026 (3)	0.041 (3)	-0.001 (3)	0.008 (3)	-0.010 (2)
C15	0.046 (6)	0.028 (5)	0.039 (5)	0.002 (4)	-0.006 (4)	-0.004 (4)
C4	0.077 (7)	0.027 (5)	0.057 (5)	0.006 (5)	-0.004 (5)	0.005 (4)
N3	0.065 (5)	0.043 (4)	0.049 (5)	-0.005 (5)	0.001 (4)	0.011 (5)
C10	0.042 (6)	0.064 (6)	0.038 (5)	-0.012 (5)	0.000 (5)	0.001 (4)
O7	0.120 (5)	0.069 (4)	0.049 (4)	0.011 (6)	-0.026 (4)	0.002 (5)
C20	0.057 (6)	0.057 (6)	0.078 (7)	-0.018 (6)	-0.014 (6)	0.019 (5)
C5	0.055 (6)	0.034 (5)	0.055 (6)	0.006 (4)	-0.001 (5)	-0.002 (4)
C13	0.074 (6)	0.029 (5)	0.072 (6)	-0.024 (5)	0.003 (6)	0.002 (5)
011	0.066 (4)	0.058 (4)	0.040 (4)	0.013 (4)	0.000 (3)	-0.021 (3)
09	0.068 (4)	0.037 (4)	0.078 (5)	0.003 (3)	0.013 (4)	-0.012 (3)
N5	0.043 (5)	0.065 (6)	0.053 (6)	-0.007 (5)	-0.004 (4)	-0.004 (5)
012	0.070 (4)	0.041 (4)	0.060 (4)	-0.008 (3)	-0.014 (4)	0.001 (3)
08	0.056 (4)	0.058 (5)	0.069 (4)	0.017 (3)	-0.004 (3)	-0.025 (3)
N4	0.039 (5)	0.060 (6)	0.059 (5)	-0.006 (4)	-0.001 (4)	0.015 (4)
O10	0.052 (4)	0.099 (5)	0.098 (5)	0.009 (5)	0.003 (4)	-0.013 (4)
C17	0.059 (7)	0.032 (4)	0.038 (5)	0.006 (5)	0.006 (4)	-0.011 (3)
C3	0.050 (7)	0.033 (5)	0.051 (5)	-0.012 (5)	-0.009 (4)	0.003 (3)
C8	0.045 (6)	0.061 (7)	0.060 (6)	0.005 (5)	0.010 (5)	-0.014 (5)

C9	0.061 (6)	0.044 (5)	0.045 (4)	0.001 (5)	-0.001(5) -0.006(5)	-0.009(4) -0.016(4)
013	0.043 (0)	0.054 (5)	0.005(7)	-0.039(5)	-0.024(4)	0.010(+)
C18	0.097(3)	0.100(3)	0.045(4)	0.039(3)	0.024(4)	0.023(4)
018	0.002 (0)	0.037 (3)	0.070(7)	0.008 (3)	0.003 (3)	0.005 (5)
Geometric param	neters (Å, °)					
Sm101		2.455 (5)	C19—	H19A		0.9700
Sm1—O2		2.401 (5)	C19—	H19B		0.9700
Sm1—O3		2.621 (5)	С6—С	5		1.390 (10)
Sm104		2.581 (5)	04—0	215		1.356 (9)
Sm1—O5		2.503 (4)	04—0	217		1.473 (8)
Sm106		2.573 (5)	C15—	C14		1.404 (11)
Sm108		2.561 (5)	C4—C	5		1.341 (10)
Sm109		2.507 (6)	C4—C	3		1.408 (10)
Sm1-011		2.560 (5)	С4—Н	[4		0.9300
Sm1012		2.548 (6)	N3—C	07		1.205 (7)
Ni1—O1		1.861 (5)	C10—	H10		0.9300
Ni1—O2		1.863 (5)	C20—	H20A		0.9600
Ni1—N1		1.837 (7)	C20—	H20B		0.9600
Ni1—N2		1.840 (6)	C20—	H20C		0.9600
O2—C16		1.298 (9)	С5—Н	15		0.9300
O1—C1		1.312 (8)	C13—	C14		1.359 (11)
C16-C11		1.391 (10)	C13—	H13		0.9300
C16—C15		1.429 (10)	011—	N5		1.287 (9)
N2-C10		1.257 (9)	09—N	14		1.279 (9)
N2—C9		1.490 (9)	N5—C	013		1.195 (9)
O5—N3		1.257 (8)	N5—C	012		1.261 (9)
C1—C2		1.381 (10)	08—N	14		1.235 (8)
C1—C6		1.407 (11)	N4—C	010		1.233 (9)
O6—N3		1.259 (7)	C17—	C18		1.481 (10)
O3—C2		1.405 (8)	C17—	H17A		0.9700
O3—C19		1.453 (9)	C17—	H17B		0.9700
N1—C7		1.303 (10)	С3—Н	13		0.9300
N1—C8		1.463 (10)	C8—C	9		1.519 (11)
C11—C12		1.404 (10)	С8—Н	[8A		0.9700
C11—C10		1.472 (11)	С8—Н	8B		0.9700
C2—C3		1.368 (10)	С9—Н	19A		0.9700
C12—C13		1.357 (11)	С9—Н	19B		0.9700
C12—H12		0.9300	C14—	H14		0.9300
С7—С6		1.412 (11)	C18—	H18A		0.9600
С7—Н7		0.9300	C18—	H18B		0.9600
C19—C20		1.488 (11)	C18—	H18C		0.9600
O2—Sm1—O1		62.13 (17)	C13—	С12—Н12		120.0
O2—Sm1—O5		122.20 (18)	C11—	С12—Н12		120.0
O1—Sm1—O5		114.80 (19)	N1—C	C7—C6		127.7 (8)
O2—Sm1—O9		140.61 (17)	N1—C	27—H7		116.1
O1—Sm1—O9		115.33 (19)	C6—C	7—H7		116.1
O5—Sm1—O9		95.3 (2)	O3—C	C19—C20		112.2 (7)

O2—Sm1—O12	73.54 (18)	O3—C19—H19A	109.2
O1—Sm1—O12	111.58 (17)	С20—С19—Н19А	109.2
O5—Sm1—O12	132.8 (2)	O3—C19—H19B	109.2
O9—Sm1—O12	71.85 (18)	С20—С19—Н19В	109.2
O2—Sm1—O11	75.72 (17)	H19A—C19—H19B	107.9
O1—Sm1—O11	69.51 (19)	C5—C6—C1	119.7 (8)
O5—Sm1—O11	161.9 (2)	C5—C6—C7	119.3 (7)
O9—Sm1—O11	67.87 (19)	C1—C6—C7	121.0 (7)
O12—Sm1—O11	50.1 (2)	C15—O4—C17	118.3 (6)
O2—Sm1—O8	133.3 (2)	C15—O4—Sm1	119.2 (4)
O1—Sm1—O8	163.45 (19)	C17—O4—Sm1	121.9 (4)
O5—Sm1—O8	64.8 (2)	O4—C15—C14	126.9 (8)
O9—Sm1—O8	49.90 (19)	O4—C15—C16	114.0 (7)
O12—Sm1—O8	73.3 (2)	C14—C15—C16	118.9 (8)
O11—Sm1—O8	105.78 (19)	C5—C4—C3	119.4 (7)
O2—Sm1—O6	80.85 (17)	С5—С4—Н4	120.3
O1—Sm1—O6	71.76 (18)	C3—C4—H4	120.3
O5—Sm1—O6	49.78 (18)	O7—N3—O5	122.4 (7)
O9—Sm1—O6	137.87 (18)	O7—N3—O6	121.2 (8)
O12—Sm1—O6	147.46 (18)	O5—N3—O6	116.3 (7)
O11—Sm1—O6	140.73 (19)	N2-C10-C11	122.9 (8)
O8—Sm1—O6	113.23 (19)	N2-C10-H10	118.6
O2—Sm1—O4	61.93 (16)	C11-C10-H10	118.6
O1—Sm1—O4	119.50 (17)	С19—С20—Н20А	109.5
O5—Sm1—O4	78.42 (18)	С19—С20—Н20В	109.5
O9—Sm1—O4	121.96 (18)	H20A—C20—H20B	109.5
O12—Sm1—O4	71.87 (17)	С19—С20—Н20С	109.5
O11—Sm1—O4	115.66 (19)	H20A—C20—H20C	109.5
O8—Sm1—O4	77.00 (19)	H20B-C20-H20C	109.5
O6—Sm1—O4	78.55 (17)	C4—C5—C6	121.6 (8)
O2—Sm1—O3	122.88 (16)	С4—С5—Н5	119.2
O1—Sm1—O3	60.80 (16)	С6—С5—Н5	119.2
O5—Sm1—O3	80.69 (18)	C12-C13-C14	120.9 (8)
O9—Sm1—O3	70.72 (17)	С12—С13—Н13	119.5
O12—Sm1—O3	131.34 (17)	C14—C13—H13	119.5
O11—Sm1—O3	87.11 (19)	N5—O11—Sm1	96.2 (5)
O8—Sm1—O3	103.73 (19)	N4—O9—Sm1	97.4 (5)
O6—Sm1—O3	79.66 (17)	O13—N5—O12	120.9 (10)
O4—Sm1—O3	156.43 (16)	O13—N5—O11	122.8 (9)
N1—Ni1—N2	86.9 (3)	O12—N5—O11	116.2 (8)
N1—Ni1—O1	95.3 (3)	N5—O12—Sm1	97.5 (5)
N2—Ni1—O1	174.1 (3)	N4—O8—Sm1	96.0 (5)
N1—Ni1—O2	175.6 (3)	O10—N4—O8	121.8 (9)
N2—Ni1—O2	93.7 (3)	O10—N4—O9	121.5 (9)
O1—Ni1—O2	84.6 (2)	O8—N4—O9	116.6 (8)
C16—O2—Ni1	124.6 (5)	O4—C17—C18	112.5 (6)
C16—O2—Sm1	127.0 (5)	O4—C17—H17A	109.1
Ni1—O2—Sm1	107.4 (2)	C18—C17—H17A	109.1
C1-O1-Ni1	127.6 (6)	O4—C17—H17B	109.1

C1—O1—Sm1	127.0 (5)	C18—C17—H17B	109.1
Ni1—O1—Sm1	105.4 (2)	H17A—C17—H17B	107.8
O2-C16-C11	125.3 (7)	C2—C3—C4	119.3 (7)
O2—C16—C15	116.8 (7)	С2—С3—Н3	120.3
C11—C16—C15	117.9 (7)	С4—С3—Н3	120.3
C10—N2—C9	120.3 (7)	N1—C8—C9	105.1 (7)
C10—N2—Ni1	128.8 (6)	N1—C8—H8A	110.7
C9—N2—Ni1	110.8 (5)	С9—С8—Н8А	110.7
N3—O5—Sm1	98.2 (4)	N1—C8—H8B	110.7
O1—C1—C2	118.9 (8)	С9—С8—Н8В	110.7
O1—C1—C6	123.5 (8)	H8A—C8—H8B	108.8
C2—C1—C6	117.6 (7)	N2—C9—C8	106.2 (6)
N3—O6—Sm1	94.7 (4)	N2—C9—H9A	110.5
C2—O3—C19	118.3 (6)	С8—С9—Н9А	110.5
C2—O3—Sm1	119.9 (4)	N2—C9—H9B	110.5
C19—O3—Sm1	121.7 (4)	С8—С9—Н9В	110.5
C7—N1—C8	120.5 (7)	Н9А—С9—Н9В	108.7
C7—N1—Ni1	124.6 (6)	C13—C14—C15	121.1 (8)
C8—N1—Ni1	114.5 (6)	C13—C14—H14	119.4
C16—C11—C12	120.9 (8)	C15-C14-H14	119.4
C16—C11—C10	120.9 (7)	C17-C18-H18A	109.5
C12—C11—C10	118.1 (8)	C17—C18—H18B	109.5
C3—C2—C1	122.1 (7)	H18A—C18—H18B	109.5
C3—C2—O3	124.5 (7)	C17—C18—H18C	109.5
C1—C2—O3	113.2 (6)	H18A—C18—H18C	109.5
C13—C12—C11	120.0 (8)	H18B—C18—H18C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
С20—Н20А…О9	0.96	2.49	3.150 (10)	126	
C20—H20C···O7 ⁱ	0.96	2.55	3.308 (12)	136	
C17—H17A…O8 ⁱⁱ	0.97	2.59	3.536 (9)	164	
C9—H9A…O13 ⁱⁱⁱ	0.97	2.43	3.283 (11)	147	
C7—H7…O13 ^{iv}	0.93	2.39	3.320 (10)	173	
Symmetry codes: (i) $x-1/2$, $-y+1/2$, $-z+2$; (ii) $x+1/2$, $-y+3/2$, $-z+2$; (iii) $x+1$, y , z ; (iv) $-x+2$, $y-1/2$, $-z+3/2$.					

Fig. 1

